Exercise 1

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}+2 y^{\prime}-8 y=1-2 x^{2}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+2 y_{c}^{\prime}-8 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+2\left(r e^{r x}\right)-8\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+2 r-8=0
$$

Solve for r.

$$
\begin{gathered}
(r+4)(r-2)=0 \\
r=\{-4,2\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-4 x}$ and $e^{2 x}$; by the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{-4 x}+C_{2} e^{2 x} .
$$

The particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}+2 y_{p}^{\prime}-8 y_{p}=1-2 x^{2} \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is a polynomial of degree 2, the particular solution is $y_{p}=A x^{2}+B x+C$.

$$
y_{p}=A x^{2}+B x+C \quad \rightarrow \quad y_{p}^{\prime}=2 A x+B \quad \rightarrow \quad y_{p}^{\prime \prime}=2 A
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
& 2 A+2(2 A x+B)-8\left(A x^{2}+B x+C\right)=1-2 x^{2} \\
& (2 A+2 B-8 C)+(4 A-8 B) x-8 A x^{2}=1-2 x^{2}
\end{aligned}
$$

Match the coefficients on both sides to get a system of equations for A, B, and C.

$$
\left.\begin{array}{rl}
2 A+2 B-8 C & =1 \\
4 A-8 B & =0 \\
-8 A & =-2
\end{array}\right\}
$$

Solving this system yields

$$
A=\frac{1}{4} \quad \text { and } \quad B=\frac{1}{8} \quad \text { and } \quad C=-\frac{1}{32},
$$

which means the particular solution is

$$
y_{p}=\frac{1}{4} x^{2}+\frac{1}{8} x-\frac{1}{32} .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{-4 x}+C_{2} e^{2 x}+\frac{1}{4} x^{2}+\frac{1}{8} x-\frac{1}{32},
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

